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1. Introduction

In previous work we performed a comparative survey of several different methods of designing
a feedback control for nonlinear systems [1]. Since finding the exact optimal feedback control is,
in general, impossible for the nonlinear case, the methods used various approaches to finding an
effective suboptimal control. In this paper we will extend one of the nonlinear feedback control
methods to treat problems involving tracking control and state estimation, which would allow it to
be used in a wide class of real applications.

Both tracking and estimation, like the simple optimal feedback control problem, have been
widely studied for linear systems, and methods of formulation of the control and estimator are well
known (for example, see [2, 3] and the references they contain). In the linear case the tracking
problem is solved in two parts: a feedback control determined by the algebraic Riccati equation
(ARE), and a time-dependent tracking variable found by solving an ordinary differential equation
(incorporating the desired trajectory) backwards from a stable final time. The state estimation
problem for linear systems involves the formulation of a state estimator system incorporating the
observed measurement of the actual state and a gain matrix found through a second Riccati equation.

To construct observers and tracking controls for the nonlinear case we first hoped to extend
the two-term power series control of Garrard [4], given its simplicity and effectiveness in the types
of problems studied in [1]. However, since it is based directly on the Hamilton-Jacobi-Bellman
equation for optimal feedback control, and the linear tracking control in particular is derived from
the Hamiltonian state/costate formulation of the control problem, combining the two proved difficult.
Instead, our approaches are based on the state-dependent Riccati equation (SDRE) [5, 6, 7, 8, 9],
which is also very simple to calculate, though not quite as effective as the two-term power series
method at controlling some chosen test problems in [1]. However, as shown in this paper, the SDRE
method is more readily adaptable to the nonlinear tracking and nonlinear state estimation problems,
since it is closely related to the ARE-based method used to find those controls in the linear problem.

While there is a large amount of literature available on state estimation for nonlinear systems, a
literature search revealed very little material on tracking control for nonlinear systems. The tracking
control technique discussed in this paper was developed directly out of the combination of the SDRE
for nonlinear control with the linear method for tracking control. The method of state estimation
we will describe below is closely related to work by Thau and others [10, 11, 12, 13] on nonlinear
estimators which are themselves extensions of the linear state estimation formula.

There are other very different methods for state estimation described in the literature which we
decided not to use, mostly because they are difficult to implement, though theoretically solid. A
large effort has been made with types of methods that use a nonlinear transformation to change the
subject system into a very specific observer form, mostly using many Lie derivatives of the nonlinear
functions from the problem measurement and dynamics [14, 15, 16, 17, 18, 19, 20]. Other methods
use Lie derivatives as well but not in a transformation to a simpler system form [21, 22]. Also, there
are methods using a linearization about a family of constant operating points of the system [23],
variable-structure system techniques [24], and Lyapunov theory [25]. A number of these methods
are compared in the survey paper of Walcott, Corless and Zak [26]. These methods prove difficult
to use in many applications, especially problems with complicated nonlinearities in the dynamics
or measurement. More specifically, the nonlinear transformation is often very hard to find or may
not even exist, higher-order Lie derivatives are often hard to calculate, the linearization around



the family of solutions may be very difficult, and finding the appropriate Lyapunov function may be
quite challenging. There may be restrictions on the types of problems for which various methods can
guarantee results theoretically, or even be used at all. The state-dependent Riccati equation based
method that we develop involves some approximations and assumptions, but it is straightforward to
implement and is applicable to a certain class of nonlinear systems that are important in practice.

In Section 2 of the paper we will give a brief description of the state-dependent Riccati equation
in the context of simple feedback control of nonlinear systems. Section 3 will focus on our formulation
of the feedback tracking control, and Section 4 on the state estimator, for the nonlinear case. The
controls will be implemented on two test problems in Section 5, and the results will be discussed and
compared against the linear tracking control and linear and partially nonlinear estimators. Finally,
overall conclusions will be given in Section 6.

2. The State-Dependent Riccati Equation

The state-dependent Riccati equation (SDRE) is one method for obtaining a feedback control for
nonlinear systems, and is described in detail by Cloutier, D’Souza and Mracek in [9]. It is simply an
extension of the constant-valued algebraic Riccati equation used to find the optimal feedback control
in the linear quadratic regulator problem, which is well established for finite and infinite dimensional
problems (see e.g. [27, 28]). There are also stable and robust algorithms for solving the algebraic
Riccati equation available in the literature.

Consider a system of the type

{ z((é)) = f(z(t)) + Bu(z(t)) (1)

= 2o,

which is nonlinear in the state £ € @ C R™ and is linear in the control w : @ — R*, and a quadratic
cost functional

L[>/ r T
J(zo,u) = —/ (:c Qzr+u Ru) dt
2 Jo
with given constant-valued weighting matrices ) and R of appropriate dimensions. The optimal
control problem is to find a state feedback control u*(z*) which minimizes the cost for all possible

initial conditions xy.
We begin with the Hamiltonian for this problem, which is defined as

1 1
H(z,u,p) = ExTQm + §uTRu + pT (f(z) + Bu).

From the Hamiltonian the necessary conditions for the optimal control are given by

= o = f(z*) + Bu (2)

R RPN )

p = —%——Qx —%(37 )P (3)
_ aH _ * T x



From equation (4), the control is given in terms of the costate variable, p*(t), by u*(t) = —R ' BTp*(¢).

We will seek a costate of the form p*(¢) = II (z*(¢)) z*(¢). First, taking the derivative of p*
yields p* = II (z*) £* 4+ DI (z*) *. Then we substitute into this equation the formulas for £* and
p* determined by the necessary conditions (2) and (3), and the formulas for v* and p* given above,
resulting in

T

T (z*) [f(:];*) _ BRBTTI (_’1,'*);1;*] + DI (z*) 2" = —Qz* 5 e

) (z*) z*,

which can be rewritten as

* * afT * * * * —1 T * * * * *
H(z)f(w)—i—a(x JI(z*)z* —II(z*) BR "B I (z*)z* + Qz* + DI (z*)z* = 0.  (5)

The term D,II(z) is a somewhat misleading notation; it is the total time derivative of II(z(¢)) given
by

Z a!Ek xk’

and thus has no meaning except when evaluated along a state trajectory x(t) so that © can have
some value.

For the simpler linear problem, where the dynamics are f(z) = Agz, £* can be factored out of
each term in equation (5) so that it becomes

Ay + AITT —TIBR'BTTI + Q = 0. (6)

Equation (6) is now the standard algebraic Riccati equation with a constant-valued solution matrix
II. The resulting optimal feedback control is given by u*(z*) = —R~!BTIIz*.

The SDRE method involves mimicking the above use of the Riccati equation by rewriting the
nonlinear function of z in (1) as f(z) = A(z)z. Note that the choice of the state-dependent matrix
function A is not unique, and different controls will result from different choices of A. With f
rewritten in this way equation (5) becomes

T
—II(z*) BR™ IBTH(:L‘ )x +Qz* + DIl (z%)z* = 0,

which can then be rewritten as

[H (%) A(z*) + AT (z*)I1 (z*) — I (z*) BR™'B'TI (z*) + Q
m T
+Z (aAlﬁmz(m*)> H(.’II*) +DtH (‘T*):I‘T* — 0’

where the A-column derivatives are given by



0Aq1;/0 <o 0Aq;/0xy,
0A1sm; 1./ o . 1./ ’

or 3 - 3
OAmi/0z1 -+ OAmi/OTm

This equation can be divided into the state-dependent Riccati equation

M(x)A(z) + AT (x)TI(z) — O(z) BR™'BTT(z) + Q = 0, (8)
and two extra terms
- 8A1—>mi r
T, | ——(x II(z) + DJII(x) = 0. 9
S () M)+ D) )

In the SDRE method one assumes the extra terms remain small and ignores them (thus, among
other things, removing the necessity of specifying a trajectory z(t) so that D,II(x) can be evaluated
in the equation). This assumption creates a suboptimal feedback control based on the solution to
the Riccati equation (8) and given by

u(z) = —R™'BTTI(z)x. (10)

In almost all problems the SDRE solution II(z) of (8) is much more difficult to find than for the
constant-valued case (6). Wernli and Cook [7] propose a method for solving the Riccati equation
(8) using a power series expansion, which we will follow. We begin by splitting A into a constant
part and a state-dependent part as A(z) = Ag + eAA(z), where ¢ is a temporary variable used for
the expansion that will be set to 1 later. We next write II as a power series in ¢, as

I(z,e) = i e"Lp(z), (11)

where II as well as each L, is symmetric. Substituting these expansions into the state-dependent
Riccati equation (8), we find

(i s”Ln(x)> (Ao +eAA()) + (AT +eAA"(z)) (i E"Ln(x)>
n=0 n=0

— (i E"Ln(m)> BR™'B” (i 5”Ln(x)> +Q = 0.
n=0

n=0

We then match terms with the same powers of € to obtain the following set of equations to determine
L,:

LoAg+ ALy —LeBR'BTLy+Q = 0 (12)
L (AO - BR—lBTLO) + (AOT - LOBR—lBT) L+ LoAA+ AATL, = 0 (13)
L, (4o~ BR7'B"Ly) + (A§ — LoBR™'B") Ly + Ly 1AA+ AATL,

n—1
—Z(LkBR—lBTLn,k) = 0. (14
k=1



Equation (12) is the standard Riccati equation for the linear part of the system, Ay, and is easily
solved, but equations (13) and (14) may be tedious to solve if the function AA(z) is complicated.
However, for a certain class of nonlinear functions, the higher-order terms in the SDRE expansion
are much easier to consider. Specifically, we consider those problems in which AA has the same
function of z in all of its entries, so it can be written as AA(z) = g(x)AA¢ with a constant-valued
matrix AAc (both of the examples in Section 5 are of this type). By defining Ly, (z) = ¢"(z)(Ln)c,
where (L) is a constant-valued matrix, we can factor out ¢"(z) from (14) to obtain

(Ln)c (Ao — BR™'BTLo) + (AT — LeBR'BT) (Ln)c + (Ln-1)cAAc + AAG(Ln1)c

n—1
_Z<(Lk)cBR_lBT(Ln—k)c) = 0.
k=1

The above equation is a constant-valued matrix Lyapunov equation, for which stable and efficient
algorithms exist in the literature, so this class of SDRE problems can be solved to as many terms
of the power series as desired. Once as many L, terms as desired have been found, the control is
obtained by substituting them back into (11) and (10) with ¢ set to 1.

Some theoretical results are available for the state-dependent Riccati equation and the subopti-
mal feedback control law derived from it. Wernli and Cook [7] show the existence and asymptotic
stability of the controlled system, given certain assumptions on the properties of system. Cloutier,
D’Souza and Mracek [9] prove, given certain other assumptions, properties of local and global sta-
bility, robustness and suboptimality for the control. Hammett, Hall and Ridgely [29] discuss the
issues of controllability and stabilizability (properties important to the proofs in [9]) in regards to
the SDRE method of controlling nonlinear systems.

The SDRE method can be calculated very quickly for the case described above with AA(z) =
g(z)AAc, but this assumption on the form of AA does limit the problems for which the SDRE
approach is most useful. There is also the drawback that this method of control ignores the extra
terms in equation (9) in setting up the SDRE, and additionally the power series solution is only
an approximation to the exact solution of the SDRE (in particular it is less accurate farther from
the power series expansion point of the origin). These approximations lead to only a suboptimal
feedback control, although the application of the method to test problems in [1] shows generally very
good results.

3. Tracking Control for Nonlinear Systems

In this section we will derive an analogous SDRE-based solution to the feedback tracking control
problem for a nonlinear system in a manner similar to the derivation in [3] for a linear system. We
focus on the differential equation system

#(t) = f(z(t)) + Bu(z(t),)

z(0) Zo
y(t) = Hux(t).

This is the same as in the previous section with the addition of the variable y, which is the signal
we want to follow along a desired trajectory. We take y as a linear function of the state variables
for now. The cost function for the tracking problem, with a desired trajectory r(t), is given by



J(zo,u =3 / —r)IQ—r)+ uTRu) dt.

To prepare for the application of the SDRE, we rewrite the nonlinear function as f(x) = A(z)z.
With this notation, the Hamiltonian is given by

H(z,u,p) = 1(Hav —r)TQHz —r) + %UTRU + p” (A(z)z + Bu).

2

The necessary conditions for the optimal control are

oH

¥ = — = A(z")z"* + Bu" (15)
op
-k a% T T % * (aAl—ﬂnl * )T *
= —-H A — T — 1
P gy = QU - AT - 3al (T ) 9
0 = a—H:Ru*+BT * (17)
ou

with the A-column derivatives as defined in equation (7). From equation (17), the control is given
by the form u*(t) = —R 'BTp*(t).

We seek a costate of the form p*(¢) = II(z*(¢)) z*(¢) + s(t) (with a time-dependent tracking
variable s added to the version from Section 2) which satisfies the necessary conditions. As before,
we take the derivative of p* to obtain p* = II (z*) * + $ + DI (z*) *. Then we substitute in the
formulas for * and p* from the necessary conditions (15) and (16), and the above formulas for u*
and p*, yielding

IT (z*) [A(-T*)J?* — BR'BT (1 (") z* + 3)] + 5+ Dyl (%) 2" = —HTQ(Hz* — 1)

(o) @) et 49,

which can be rewritten as

[H (z*) A(z*) + AT (z")II (z*) — 11 (z*) BR™'BTII (z*) + HTQH] T + [s + AT (z%)s

m . T
~TI(z*)BR 'B"s —H'Qr+> a} (L%Zm” (x*)) (IT (z*) z* 4 5) + DI (z¥) ;,;] - 0.
=1

This separates the equation into two parts: a state-dependent Riccati equation for determining I1(x)
with which to find the feedback control gain, and an ODE for determining the tracking variable s(t).

In the non-tracking feedback control problem in Section 2, the terms involving derivatives of
A and IT in (9) were assumed to be small and were neglected, thus reducing the problem down to
Riccati equation form. This neglecting of terms is what makes the SDRE method only a suboptimal
means of control. However, now there is a second part to the problem, the tracking variable equation
given by



s+ AT (z)s —TI(z) BR™'BTs — HTQr + Z Z; (M
i=1 Oz

T
(:1:)) (I (z) 2+ 5) + Dyl () 7 = 0. (18)
We note that the solution to this equation is state-dependent (i.e., s should actually be written as
s(t,z)) through the presence of A(z) and II(z) even without the derivative terms, so by keeping the
derivative terms in the equation we can include their effects in the control design without drastically
changing the nature of the problem.

Solving the tracking equation is more difficult for this nonlinear problem than for the linear
case described in [3]. In the linear problem the ODE is solved, offline, backwards from an assumed
final time value s(Tf) = 0. For the nonlinear case, s(t,z) must still be computed offline (since
the value of s at t = 0 is unknown), but now this computation must include the dependence of the
equation on z through the now state-dependent A and II as well as the derivative terms not present
in the linear case. We do this by solving for s using a trajectory z,om(t) found with the state
equation Znom = A(Tnom)Znom — BR™'BT(II (Znom) Znom + $), coupled to equation (18). Given
the initial condition ,0m(0) = x¢ and the final condition s(T', Zpom (Tf)) = 0, this results in a two-
point boundary value problem which can be discretized and solved with a finite difference method
for Tpom(t) and s(t, Tpom(t)). Note that the coupling of the s and ., equations provides the
trajectory Znom(t) necessary to evaluate the DII(zy0m) term in (18).

We use the notation ., to clarify that this is a nominal trajectory solved offline, before actual
implementation of the feedback control on the system. If the system dynamics are known precisely
then it will match the actual trajectory precisely. However, for example, in Section 5 the control
is applied to a problem with random noise in the & system but not in the nominal .y, system,
to represent a problem where an actual physical system & has some unpredictable noise which the
model Z,,;, is unable to include. In the offline calculation of s coupled with z,;, in the TPBV
problem, differences between z and ., due to an altered initial value or some variation or noise
will result in an inaccurate s since it is found using an inaccurate z,q,,. We tacitly assume that z,om
is a good prediction of the actual state behavior, and that any small differences will not drastically
impact the effectiveness of the control. Another area of concern in this tracking control method is
the fact, discussed in Section 2, that since we are finding a power series based solution to the SDRE,
it will be more inaccurate the farther the state is from the expansion point, which is the origin. This
is particularly important for the tracking problem, since we specifically want the state to follow a
certain nonzero trajectory.

To summarize, the control formula

u(z,t) = —R7'BT (I (z) z + s(¢,z)) (19)
is found by, first, solving the SDRE

Il (z) A(z) + AT (2)[I (z) — I (z) BR 'BTTI (z) + H'QH =0 (20)
for II(z) in the manner described in Section 2. The second part of the control design process is
then to find the tracking variable s(t, Znom) from

$ = —AT(zpom)s + 1 (2nom) BR'BTs + HTQr
0A1 smi T
- Zﬁl (wnom)i ( Q;nom’ (Inom)) (H (xnom) Tnom + 3) — DI (*Tnom) Tnom (21)
Tnom = A(xnom)xnom - BR_IBT(H (-'If'nom) Tnom + 3)



in a two-point boundary value problem with z,om(0) = zo and s(Tf, Tnom (Tf)) = 0.

For a nonlinear tracking signal y(¢t) = H(z(t))z(t), the control problem becomes somewhat more
complicated. The state-dependence of H affects the control formulation in a similar way to that of
A, resulting in the Riccati and tracking variable equations in (20) and (18) being expanded into the
following forms:

11 (z) A(z) + AT ()11 (z) — I (z) BR™'BTTI (z) + H (z)QH () = 0 (22)
m ) T
s+ AT(z)s — () BR™'BTs — H' (z)Qr + sz (%(x)) QH(z)z—r)
=1
o~ (0Aismi, T
T, | ———(z II(z)z+s)+ DIl (x)x = 0.
+2a (PR @) M@ate) - paw

The tracking variable equation is only slightly changed, adding one more term and making H state-
dependent in another, neither of which strongly affects the solution process. The SDRE contains
the added state-dependence of H in the H QH term, which can have more important consequences.
If H(x) is not a very complicated formula as was discussed for A(z) in Section 2, such as H(z) =
Hy + g(z)AH¢, then it may simply add terms to the equivalent of the higher-order equations (13)
and (14) in the power series solution of equation (22). A problem arises if H(z) has no constant-
valued part Hy, but only higher-order parts. This will cause the }-based term to vanish from the
tracking problem equivalent of the first equation in the power series solution (12), which results in
only a trivial solution to that equation and causes difficulties in the higher-order equations as well.
This makes finding a usable feedback control with this method very difficult for that case. However,
the linear tracking signal is sufficient for a large number of tracking problems, and we will consider
only that form of the problem for now.

4. State Estimation for Nonlinear Systems

The method we chose for the state estimation is related to the linear-system case [2, 3] and to
previous work on nonlinear systems in the literature [10, 11, 12, 13]. We consider a system of ODEs
with nonlinear dynamics and a nonlinear measurement of the form

{ﬂ'ﬁ(t) = f(x(t)) + Bu(ze(t), 1)
z(t) = c(z(t))-

The control for a tracking problem is given by u(ze,t) = —R™ BT (I (x¢) ze + $(t, Tnom)) as dis-
cussed in the last section except now in terms of the estimated state z..

We look for a state estimator of type e = fc(ze,t) + F(z,xe). If the error in the estimation is
e = I — Z¢, then

é=1— i = f(x) + Bu(ze,t) — fe(we,t) — F(c(z),ze)-

Let fo(ze,t) = f(ze) + Bu(ze,t) — F(c(ze), ze). This leads to

é= (f(z) — F(c(@), 2e)) — (f(xe) — Flec(xe), ze))- (23)



As an indication of a good estimator, we want the error to be asymptotically stable, so that e(t) — 0
(or z¢(t) — z(t)) as t = oo. We want to choose a function F' which will satisfy this condition.

For a linear problem, satisfying the stability condition is fairly straightforward, as described in
[2, 3]. The dynamics in this case become f(z) = Apz, the measurement becomes c¢(z) = Cyz and we
write the unknown function F(z,z.) = Loz = LyCyz, so that we are seeking a constant-valued gain
matrix Ly. The problem then reduces to é = (A9 — LoCp)e. This is asymptotically stable when all
the eigenvalues of Ay — LoCy have negative real parts, so an Ly must be found which results in such
eigenvalues. Such an Ly is guaranteed to exist if the pair (Ag, Cp) is observable.

An "optimal” choice of Ly can be made by considering this problem as an optimal feedback
control problem. Since the eigenvalues of a matrix are the same as those of its transpose, we can
change the problem into forcing the eigenvalues of (Ay — LOCO)T = A} — CTLY to have negative
real parts. However, we note that this form of the system is related to the feedback control problem
with A= AT, B=CI and L = L}

Az + Bi
1 / > (@TM.% + aTNa) dt
2 Jo ’

K-
Il

W
I

with a control @ = —LZ. The optimal feedback gain for this problem, which best stabilizes the
system given the cost functional, is given by L = N~'B”'S, with ¥ solving the Riccati equation

LA+ ATy —SBN'BTS + M =0,
or, rewritten in terms of the original variables, Ly = ECg N1 and
YA + A —SCIN Gz + M =0.
This yields the "optimal” state estimation gain matrix Ly for constructing the state estimator
Te = Aoxe + Bu(me, t) + Lo (z — Coze) -

Several papers in the literature have expanded on this state estimation formula to include non-
linear problems. Thau [10] considers systems with the linear and nonlinear parts split, such as

& = Aoz + g(z) + Bu, (24)

where g(z) contains only second-order and higher terms, and there is a linear measurement function
z = Cpz. Thau’s estimator is of the form

Ze = Aoxe + g(ze) + Bu+ Ly (z — Coze) ,

with the gain matrix Lg calculated so that the eigenvalues of the linear part of the problem, Ayg—LCy,
have negative real parts. This can be done with a Riccati equation in the manner described earlier.
This leads to the following error equation:

é = (Ao — LoCo)e + g(x) — g(ze). (25)
Thus if g(z) is locally Lipschitz, the estimator will locally converge asymptotically.

10



Kou, Elliott and Tarn [11] consider a problem with nonlinear dynamics and measurement func-
tion and present a condition on the constant gain matrix Ly which guarantees that the estimator

Ze = f(ze) + Bu+ Lo (2 — c¢(z)) (26)

is asymptotically stable and the error decreases exponentially. However, it is often very difficult or
impossible to find Ly which satisfies this, and so this is often not very practical. Mielczarski [12] and
Hu [13] use estimators of the type in equation (26), finding Lg by separating the dynamics (as well
as the measurement) into linear and nonlinear parts like Thau did in equation (24), and using those
linear parts to find the gain matrix. They do this separation by linearizing f(z) and ¢(z) about the
origin or some other expansion point to obtain matrices Ay and Cy for the linear parts, then finding
Ly which results in all eigenvalues of Ag — LoCy having negative real parts.

The method we will describe here extends this nonlinear estimator technique further in a some-
what different direction. Instead of using a completely linearized system for finding the gain matrix
Ly, we will use a state-dependent Riccati equation to solve for the gain from the nonlinear system
itself. Rewriting f and ¢ into matrix multiplication form as f(z) = A(z)z and ¢(z) = C(z)z, and
replacing F' by F(c(z),ze) = L(z.)C(z)z, we find that equation (23) becomes

€= (A(z) — L(ze)C(2))z — (A(2e) — L(2e) C(2e)) Te-

We further manipulate the equation by adding and subtracting terms to change it into a form more
like equation (25):

¢ = (A(z) — L(ze)C(7))z — (A(we) — L(7e)C(ze))Te + (1 — 1)(A(ze) — L(ze)C ()7
= (A(we) — L(ze)Clze))e + (A(z) — A(ze) — L(z)C(2) + L(2)C () )2

We seek a gain L such that é = (A(z.) — L(z¢)C(z,))e is asymptotically stable, and assume that
the remaining term is small (which is reasonable if z is small, or z and z. are close and A and C
satisfy certain regularity properties). In analogy to the linear case, the "optimal” state-dependent
estimator gain will be computed from a state-dependent Riccati equation as outlined below.

As in the linear case, we consider the transpose of the system, AT( ) — CT( )LT(z). From
there we set up the related feedback control problem with A = AT, B = CT and L = L7:

i = )% + B(%)a

F o T T

J = 2/ Mz +u Nu)d
i =

The optimal feedback gain is now given by E(:E) = N 'BT(#)%(%), with $(%) solving the state-
dependent Riccati equation

(2)A(z) + AT(2)B(2) — B(2)B(Z)N BT ()2(z) + M =0,
or, rewritten in terms of the original variables, L(z) = %(z)C? (z) N~! with %(z) satisfying
Y (z)AT (z) + A(2)2(z) — %(2)CT () N 1C(z)%(x) + M = 0.

11



This fully state-dependent version of the Riccati equation can be very difficult to solve due to
the X(z)CT (z) N~1C(x)%(z) term, especially if the measurement function is complicated. To deal
with this, we will make a simplification, linearizing the measurement for the purposes of finding L(z).
We wish to keep intact as much of the nonlinear nature of the problem as possible, though, so while
we remove the state-dependence of C(x), we keep A(z) intact in the Riccati equation. Having done
this, we can use the SDRE solution method described in Section 2 to find the state estimation gain

L(z) = Z(z)C§ N~! (27)

from the state-dependent Riccati equation

Y(z)AT (z) + A(z)B(z) — 2(z)CI N CoX(z) + M =0 (28)

with Cy = C(0). The nonlinear dynamics and measurement are also still intact in the main part of
the estimator,

e = f(zc) + Bu(ze,t) + L(ze) (2 — c(ze)) , (29)

as they are in the methods of Thau and others described above.
5. Application to Test Problems
5.1. Simple Example System

We test the tracking and state estimation methods in Sections 3 and 4 first on a simple example
problem from [30], which was used as a test problem for the nonlinear control method survey in [1].
The nonlinear control system is given by

Il 0 u
9 1

1| | 0 1
a'vz_x%()

in a factorized form appropriate for the SDRE. The cost functional is given by

_|_

J(zo,u =3 / T Qx + uTRu) dt,

or, slightly modified for the tracking problem,

J(z,u =3 / - TQy —r)+ uTRu) dt.

First we will consider just the feedback tracking control problem, with no state estimation
involved. We will track the variable y = 1, attempting to force it to jump up from 0 to 0.5, hold,
and then jump back to 0 (as shown in Figure 1). The weights in the cost function will be set to
@ = 10 and R = 1, and the initial condition, of course, is at the origin. The numerical computation
of the controls and solution of the systems are done with MATLAB code written by the authors,
using the built-in functions ”are” for solving constant-valued algebraic Riccati equations and ”ode45”
for solving ODE systems. The two-point boundary value problem for the tracking variable in the

12



nonlinear case is solved with a final time of Ty = 15, and 100 time discretization intervals. The first
five terms of the SDRE power series solution are used.

The results of the tracking control problem are plotted in Figure 1 for the nonlinear tracking
control described in Section 3 in equations (19)-(21), as well as a linear tracking control obtained
by linearizing the problem and then using the standard linear techniques. The nonlinear control

0.6

PESN — Desired
y \ - — Linear
05} 4 ) — Nonlinear ||

State x

|
©
[

Time

Figure 1: Comparison of feedback tracking controls on Example 1, with weight Q=10.

is obviously superior here, as the linear control drastically overshoots the maximum of the desired
trajectory. Raising the cost function weight on the state to @ = 100, as shown in Figure 2, brings
the linearly controlled state down much closer to the nonlinear case, but the nonlinear control still
produces better results.

Next, looking at a control problem with state estimation and without any tracking component,
we will set the initial condition to zo = [1,0]7 and ask the control to force the system to 0. The
initial estimated state will be (z.)o = [1.3,0]7, slightly off of the actual state, forcing the estimator
to compensate. The estimation will be based on the nonlinear measurement z = ¢(z) = z1 + z1%9.
In this problem we will set the cost function weights to @ = 10I> (I3 being a 2 x 2 identity matrix)
and R = 1, with the weights in the state estimator gain problem being M = I and N = 1. In
Figure 3 we plot the actual and estimated states for two methods of state estimation described in
Section 4. One is the method based on Thau’s work, which is the nonlinear estimator in equation
(26) using a linear gain found with a constant-valued Riccati equation (we will refer to this as the
linear SE gain control). The other is the extension of this which is described in equations (27)-(29),
a nonlinear estimator using a nonlinear gain from a state-dependent Riccati equation. The control
using nonlinear SE gain performs slightly better than the linear SE gain control in this example,
with the estimated state converging to the actual state faster and the state moving to 0 faster as

13
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Figure 2: Comparison of feedback tracking controls on Example 1, with weight Q=100.
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State x
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Figure 3: Actual and estimated states for feedback controls/state estimators in Example 1.
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well. A control found by completely linearizing the problem and finding a linear state estimator and
control was tried on the problem but failed to yield state convergence.

State estimation is now added to the tracking control problem, using the same desired step
function as in Figures 1 and 2. The weights in this case are @ = 10, R=1, M = 10l3 and N =1,
and the measurement is z = 1 + z1z2 as before. The initial condition is z¢ = [0, O]T and the initial
estimated state is (z.)o = [0.25,0]7. Figure 4 depicts the actual and estimated states x1 which
result from the feedback control combining the nonlinear tracking and state estimation techniques.
The estimator converges very nicely to the actual state while tracking the desired trajectory well.

0.6

— Desired
— Actual R
0.511 - - Estimated g N 1

0.4

T

0.3

T
1

0.2h /

State X,

0.1r /

I
o
(N

Time

Figure 4: Actual and estimated states for nonlinear tracking control/state estimator in Example 1.

This fully nonlinear control is plotted, with a partially nonlinear control using the nonlinear tracking
formula and the linear SE gain, and with the fully linear control found from the linearized system,
in Figure 5. The fully nonlinear control performs better than the linear SE gain control in forcing
the state to follow the desired trajectory (specifically in the latter half of the time period), while the
fully linear control is far less effective.

Finally, we consider the same problem as in Figures 4 and 5, with both state estimation and
tracking, except that instead of a deviation in the initial estimated state for which the estimator must
compensate, there is instead added random noise in the problem. The noise consists of independent
uniform distributions €1 (¢) and e2(¢), with |ex| < 0.1 (20% of the maximum desired z; trajectory),
one added to the dynamics and the other to the measurement:

z A(z)z + Bu + &1
2 = I1+xT1292 + €2.

In Figure 6 we compare the results of the fully nonlinear, linear SE gain, and fully linear controls
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Figure 5: Comparison of tracking controls/state estimators on Example 1, with inaccurate (z.)o-

applied to this problem. The fully nonlinear and the linear SE gain controls yield very similar results
here, and, as in Figure 5, both perform much better than the fully linear control.

5.2. Flight Dynamics Simulation Example

The second example to which we apply the state estimation and tracking control methods
discussed in Sections 3 and 4 is a modified version of the flight dynamics example from [31] (this was
also used as test problem in [1]). The system is given by

= (A() + J,‘QANL) T + Bu,

where the matrices A9, Anr, and B are given by:

[ —0.0443 11280 0.0  —0.0981 0.0
—0.0490 —2.5390 1.0 0.0  —0.0854
Ay = | —0.0730 19.3200 —2.2700 0.0  22.6834
0.0490  2.5390 0.0 0.0  0.0854
0.0 0.0 0.0 0.0 20.0
[ —0.2317 0.0 0.0 0.0 0.0
~1.2760 —0.7922 0.0 0.0 0.0206
Axp = | 01020 64.2940 —13.9710 0.0 —5.4167
1.2760  0.7922 0.0 0.0 —0.0206
0.0 0.0 0.0 0.0 0.0
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Figure 6: Comparison of tracking controls/state estimators on Example 1, with noise.

T
B = [0.0 0.0 0.0 0.0 20.0] .

The cost functional to be minimized is
J(zo,u) :5/0 ((y—r) Qly—r)+u Ru) dt.

when in tracking problem form. The state variables in this model represent the flight conditions of
the aircraft: z; is the deviation of the velocity from the level flight trim value of 1(100m/s) (given
in units of (100m/s)), =2 is the deviation of the angle of attack from the trim value of 4.2(7/180)
radians, z3 is the pitch rate in rad/s, z4 is the flight path angle in radians, and z5 is the deviation
of the canard deflection angle in radians from the trim value, which is not given. The control u is
the input canard deflection in radians. The canards are control flaps which can deflect downward
by up to 90(7/180) radians. (The meaning of the model is described in more detail in [31].)

In the first test we consider a control problem with state estimation but no tracking. The
feedback control will attempt to force the state variables to 0 from an initially large angle of attack,
given by an initial condition of zo = (0,15(7/180),0,0,0)7. However, the initial estimated state
is (ze)o = (0,20(7/180),0,0,0)T. The measurement for the estimator is of the velocity and the
canard deflection, so that z = c¢(x) = [z1,25]7. The cost functional weights are given by Q = I
and R = 100, and the weights for the estimator gain problem are M = 10015 and N = I». Figure 7
depicts the actual and estimated states for this problem using the linear SE gain (Thau) control and
the nonlinear SE gain control found with an SDRE solution. For each method it takes some time
for the estimated state to converge to the actual state, and for both to be forced to 0, but they both
do so in a smooth manner. There is a larger oscillation noticeable in the linear SE gain control,
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Figure 7: Actual and estimated states for feedback controls/state estimators in Example 2.

causing slower convergence. On the other hand, with the fully linear state estimation and control
algorithm applied, the system remains unstable and diverges to infinity.

Next we will consider a problem with tracking but no state estimation. The objective is to
track a desired flight path angle x4, increasing it gradually from 0 up to 45(7/180), holding, and
then returning to 0 (as shown in Figure 8). The initial condition is therefore at the origin, and
the cost weights are ) = 1 and R = 10. The results are plotted in Figure 8 for the nonlinear and
linear tracking controls. Here the nonlinear control does not perform substantially better than the
linear control; in fact the linear control yields better results at the top of the ramp up to 45(7/180))
though in the late time period the linear control returns to 0 more slowly than the nonlinear.

In considering a problem with both tracking and state estimation, we use the same desired
trajectory as before, forcing the flight path angle 24 from 0 up to 45(7/180) and back. Estimation is
added using a measurement of the velocity, angle of attack, and canard deflection: z = [z1, 2, z5]7 .
The weights are Q@ = 1, R =1, M = 100l5 and N = I3. The actual state starts at the origin, as
in the previous tracking problem, but the estimated state starts slightly off the actual, at (z.)o =
(0,0,0,5(7/180),0)T. Figure 9 depicts the estimated state almost converging to the actual state by
the time of the desired z4 increase, and remaining close to the actual state for the rest of the time
period. In Figure 10 we plot the actual state when controlled using our fully nonlinear algorithm,
as well as when using the linear SE gain control, and the fully linear control. It can be seen that
the linear control overshoots significantly at the top of the ascent and is very slow to return to 0.
The other two methods produce virtually identical results, the difference indiscernable in the plots
in Figure 10.

Finally, we alter the problem used in Figures 9 and 10, involving both state estimation and
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Figure 9: Actual and estimated states for nonlinear tracking control/state estimator in Example 2.
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Figure 10: Comparison of tracking controls/state estimators on Example 2, with inaccurate (z.)o-

tracking, by removing the deviation in the initial estimated state and adding random noise to the
problem. The independent uniform distributions e;(¢) and e(t), with |egx| < 2.25(7/180) (5% of
the maximum desired flight path angle, and an even larger percentage of the actual state variables
at most times), are added to the dynamics and the measurement respectively:

z (Ao + z2ANnL) Tz + Bu+ ¢
z = [z1,29,25]" +€2.

The results of the fully nonlinear, linear SE gain, and fully linear controls applied to this problem
are plotted in Figure 11, where it can be seen that the two nonlinear controls are again very similar,
and that both perform better than the linear control at tracking the desired trajectory both at its
maximum and as it returns to 0.

6. Conclusions

In this paper we have considered the method for feedback control of nonlinear systems using
the state-dependent Riccati equation and extended it into a feedback tracking control method. We
have also modified the state estimation method for nonlinear systems established in the literature to
include a nonlinear gain function found through a state-dependent Riccati equation. Application
of these new techniques to two selected example problems provided significant control authority and
distinct advantages in comparison with the linear methods.

As mentioned in earlier sections, there are some drawbacks and restrictions to the new techniques
which must be considered. The power series solution of the SDRE method grows inaccurate when the
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Figure 11: Comparison of tracking controls/state estimators on Example 2, with noise.

states move farther from the origin, something which is of particular concern in a tracking problem.
In solving the tracking variable equation by coupling it with a nominal state equation, one tacitly
assumes a good prediction of the actual state behavior for the control to be effective. There are
limitations on the types of problems to which the SDRE approach can be applied and on the types
of signals which can be tracked, and the SDRE for obtaining the nonlinear state estimation gain
uses only a linearized version of the measurement function. While these are nontrivial factors to
consider, the methods described here for tracking control and state estimation are still applicable to
a large class of important control problems, and their performance on the chosen examples provides
improvement (in places dramatic improvement) when compared to previously established control
techniques.
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